
Bulletin of Electrical Engineering and Informatics 

Vol. 9, No. 5, October 2020, pp. 2008~2011 

ISSN: 2302-9285, DOI: 10.11591/eei.v9i4.1953      2008 

  

Journal homepage: http://beei.org 

Performance analysis of multi services on container Docker, 

LXC, and LXD 
 

 

Adinda Riztia Putri, Rendy Munadi, Ridha Muldina Negara 
Adaptive Network Laboratory, School of Electrical Engineering, Telkom University, Indonesia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Nov 3, 2019 

Revised Feb 3, 2020 

Accepted Mar 15, 2020 

 

 The emergence of the container in various cloud platforms from Open Stack 

to Google Cloud Platform has marked the industry interest in opting for 

container as their cloud service solution. However, the cloud users should 

aware of performance overheads of different virtualization solutions in order 

to avoid quality of service degradation because different container platforms 

delivered different performances. This research evaluated how different 

container platforms (Docker, LXC, and LXD) impacted in running different 

TCP services and also measured system performance of each container 

compared to the native system without any container solution based on 

overall performance metrics. This research focuses on the three most used 

PaaS: FTP Server, Web Server, and Mail Server. Related to previous works, 

our evaluation results show that performance could vary between containers. 

In terms of system performance, LXD shows better performance while server 

performance result varies depending on what service is being evaluated. 

Keywords: 

Container 

Docker 

LXC 

LXD 

PaaS 

This is an open access article under the CC BY-SA license. 

 

Corresponding Author: 

Ridha Muldina Negara,  

School of Electrical Engineering, 

Telkom University, 

Jalan Telekomunikasi, Buahbatu, Bandung 40257, Indonesia. 

Email: ridhanegara@telkomuniversity.ac.id 

 

 

1. INTRODUCTION  

Virtualization has played a great role in the growth of cloud computing and considered as one of 

foundation technology for clouds [1]. There are two kinds of virtualization solution, hypervisor and container. 

The latter is the newest technology in virtualizing cloud infrastructures. Adopting and deploying technologies 

is critical to build newer paradigm to keep up with the growth of exchanged data and the consequent need to 

increase capability of data centers by means of server virtualization [2-5]. Therefore, the main focus  

of virtualization has shifted from hypervisor-based virtualization to container-based virtualization. 

Containerization offered light-weight virtualization as contrast to hypervisor-based virtualization where 

virtualization overhead is considered as an issue [6-7]. 

Container achieves generally better performance when compared to traditional virtual machine as 

what hypervisor-based virtualization offers [2]. Cloud users should aware of which containerization 

technology to adopt according to their need. In this research we evaluated different container platforms 

widely used by enterprises, that is Docker, LXC, and LXD. Although these containers are derived from  

the same idea of the emergence of Linux container, performance of each container is different depending of 

what service is running on top of it. Then, raised a question of what container should a cloud user use in 

order to run a certain kind of cloud service [8]. In order to answer it, we evaluated the most common cloud 

PaaS service: web server, FTP server, and mail server when run on the top of different container platform. 

System performance evaluation also performed in order to take a deeper attention of how well container 

https://creativecommons.org/licenses/by-sa/4.0/


Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Performance analysis of multi services on container Docker, LXC, and LXD (Ridha Muldina Negara) 

2009 

manage its filesystem, CPU performance intensive, and RAM speed by doing several batch benchmark to 

stress container system. 

‒ Related work 

In this part, we provide an overview of different technologies and how they’re leading to the use of 

containerization, also previous works regarding performance evaluation of virtualization technologies, most 

of it is related to containers. 

Hypervisor and container: 

Both container and hypervisor are used to create an abstraction level to effectively use the available 

resource to support virtualization [9-14]. Virtualization itself evidently can increase hardware utilization rates 

from 10 or 15 percent to 70 or 80 percent [15]. Hypervisor works by virtualizing hardware-level and isolates 

necessary resources such as networking, disk, memory, and CPU to create a virtual machine (VM).  

VM creates its own kernel on top of it and can only run one OS at a time [16]. Container, on the other hand, 

also isolates these resources but not create another kernel on the top of the host machine. Consequently,  

the container only provides OS-level virtualization when there is an OS already running while hypervisor 

provides hardware-level virtualization where there is no running OS. While virtual machine in hypervisor has 

to boot up its own kernel, the container is using the working kernel of the host [16, 17]. This benefit 

container, in reduced startup time and lower virtualization overhead, but lack of isolation processes  

and security. 

Figure 1 provides a better picture of how hypervisor compared to container in architecture. 

Container fundamental concept is to make virtual instances, share a single host OS and relevant libraries, 

drivers or binaries [18]. The possibility of making such a lightweight virtualization lies behind the existence 

of namespace, cgroups, and chroot. Namespaces wrap a global system resource on the host and make it 

appear to the processes within the same namespace (container) as though they have their own isolated 

instances of the global resource [19]. Cgroups used to allocate resource such as CPU, memory, network,  

and disk access bandwidth among user-defined groups of process (container) [19]. Chroot is a Linux 

command to change the root directory of the current process and its children to a new directory [8]. 

 

 

  
(a) (b) 

 

Figure 1. Comparison of (a) Hypervisor-based virtualization architecture vs  

(b) Container-based virtualization [20] 

 

 

There are various works related to performance analysis of virtualization in different aspects.  

In 2014, Dua et al [8] discussed comparison of hypervisor and various containers technologies (Warden 

container, Openvz, Docker, and lmctfy) to support PaaS. It concluded that containers have inherent 

advantage over VM because of performance improvement and reduced startup time. Like Dua et al,  

Morabito et al [2] adopted the idea of comparing hypervisor and container in a more detailed parameter than 

the previous work. They focused of two containers, Docker and LXC. LXC is said to be a more low-level 

solution that has been available a long time while Docker is on the higher-level platform. On summary, 

Morabito et al also concluded that containers perform well and suggested to take LXD into account on  

the next work. 

Still in comparison of hypervisor and container, Sampathkumar [20] compared XEN, KVM,  

and LXC. He concluded that LXC is preferred to virtualize infrastructure that us dynamic by design,  

and does not require a high degree of isolation. While, Docker is useful for the purpose of application 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 5, October 2020 :  2008 – 2011 

2010 

development where developers need a variety of library rather than a single OS. In 2016, Gupta et al [21] 

evaluated LXD and Docker and examines the performances of a set of stress test based on a number of 

benchmark for various aspects such as computation power, memory bandwidth, memory latency,  

I/O bandwidth and memory snapshots and point out LXD performed a bit better than the virtual machine  

and Docker container in computation speed performance. 

 

 

2. PROPOSED METHOD 

This part explains how we evaluate both performance of the server itself and the corresponding container. 

 

2.1. System model design 

This evaluation scenario uses one server and one client connected by a router. Focus on this research 

is the server part that will be virtualized by container to run a certain application server (FTP server, web 

server, and mail server). Specifications of hardware used in this research are listed in Table 1. 

 

 

Table 1. Hardware specification 
Processor RAM HDD NIC 
Server Client Server Client Server Client Server Client 

Intel Core i3 (3rd 

Gen) 3240T/2.9 
GHz 

Intel Celeron Dual 

CPU 1000M@1.8 
GHz 

4 GB DDR3-

1600MHz 

2 GB 1000GB SATA 

3Gb/s 7200 
rpm 

500 GB DELL 

Wireless 1703 

1 Gigabit 

NIC 

Note: Server=DELL Inspiron One 2020, Client=HP 1000 Notebook PC 

 

 

On server side, we installed Ubuntu 16.04 LTS as the host system. Then we run the step by step 

evaluation scenario: 

1. Install container, then perform system performance benchmark 

2. Install application server, then server workload benchmark 

3. Record the result, then redo step 2 with other application server focused in this research until all 

application server done the evaluation 

4. Redo step no.1 with other container platform 

Figure 2 shows architecture of this evaluation. In order to keep stability of the system, everything 

besides elements inside the virtual environment box is remained constant through evaluation. Virtual 

environment changes according to what is being evaluated. Application servers evaluated in this research are 

all TCP-based service. We did not evaluate UDP service because UDP has lower performance in container 

and has reported as an anomaly [22]. In this research, we performed two procedures of evaluation, system 

performance evaluation and application server evaluation. 

 

 

 
 

Figure 2. Virtual environment architecture of container evaluation [22] 

 

 

2.2. System performance evaluation 

System performance of this research is based on overall performance metrics, it is including CPU 

Performance, RAM Speed, and IOzone filesystem as parameters. All OS either in host system or inside 

container were using Ubuntu 16.04 LTS. 

 

mailto:1000M@1.8


Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Performance analysis of multi services on container Docker, LXC, and LXD (Ridha Muldina Negara) 

2011 

‒ CPU performance 

Different containers platform are tested using Sysbench version 0.4.12 with an argument of CPU 

testing [23]. Sysbench uses CPU to test if a number is a prime number. In this test, we compared a different 

number of threads from single thread up to 8 threads. Single thread result of containers was being compared 

to native system while multiple threads (form 2 to 8) was compared among containers only to get a picture of 

how well containers perform multiple jobs at the same time. 

‒ RAM speed 

RAM Speed test average data rate value from container to host system [19]. This test was done 

using Phoronix test suite with option of ramspeed batch benchmark 

‒ IOzone filesystem 

This test purpose was to test filesystem and hard disk drive utilization performance in read/write 

activity. Once again we used Phoronix test suite to perform this testing under the option of IOzone batch 

benchmark. We used 4 GB file with record size 4Kb. 

 

2.3.  Application server performance evaluation 

The benchmark used to measure each application server performance is different depends on  

its service. 

‒ Web server service evaluation 

The goal of this evaluation is to measure capability of Apache2 as web server on container in 

serving HTTP requests using Apache Benchmark (ab). Ab sent a number of HTTP request simultaneously to 

the web server. We used 1000, 2000, 3000, 4000, 5000, 6000, 7000, and 8000 as number of users. Result of 

this benchmark is total time of evaluation and value of request per time served by web server. 

‒ FTP server service evaluation 

This evaluation measured total time, latency, and transfer rate of FTP transaction between server  

and client. We used Apache JMeter to monitor the FTP transaction. 

‒ Mail server evaluation 

We used postal as a benchmark tool to perform this evaluation. Postal sent up to 500 messages with 

size of 25 MB per message, and built 10 concurrent threads to send these messages using SMTP protocol. 

Output of this evaluation is number of messages sent by mail server per minute. 

 

 

3. RESULTS AND DISCUSSION 

This part explains briefly of overhead calculation and discussed result of this research evaluation  

and analyzes it. Each measurement procedure was run multiple times to account system uncertainty [24], in this 

case we run it for 30 times. To calculate performance overhead, we use overhead ratio [25] as defined in (1). 

 

    
         

  
      (1) 

 

 Op refers to performance overhead; Pm denotes the benchmarking result as a measurement of  

a service feature while Pb indicates the baseline performance of the service feature, in this case is native 

system. In overall system performance, this value denormalized to value between 0 and 1. 1 is the perfect 

score held by native system as we assumed native as the baseline of this research and the perfect condition 

where there was no virtualization overhead affected its functionality. 

 

3.1. Overall system performance result 

Overall system performance consists of three separated benchmark (CPU performance, RAM speed, 

IOzone read/write). We summarized in Table 2 from each measurement to determine which system has  

the best system in terms of overall performance. This test is performed when the server is idle. 

 

3.1.1. Benchmark 

 This testing scheme is done by giving a load to the CPU which consists of calculations that  

are determined with maximum prime numbers. The results of this test indicate how long it will take for  

the CPU to do the calculation. Figure 3(a) shows each result of CPU Performance measurement of  

the system. LXD has the least overhead with Op 0.047%, LXC Op is 0.094%, and Docker Op is 0.27%. 

Result shows LXD get job done faster in term of CPU. In order to evaluate CPU in performing multiple 

threads, we doubled number of thread into 2, 4, 6, and 8. Based on Figure 3(b), CPU performance of each 

container experienced saturation on thread 6 to 8. This explained how container would be no longer effective 

when used to perform a multiple task, for example like microservice. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 5, October 2020 :  2008 – 2011 

2012 

  
(a) (b) 

 

Figure 3. Benchmark Result of single and multiple thread CPU performance, (a) Single, (b) Multiple 

 

 

3.1.2. IOzone read/write 

 Compared to native, container system performance is degraded to 20% on average based on  

Figure 4, both IOzone read and IOzone write. LXD shows the least overhead with 14.6% (97.93 Mbps) for 

IOzone Read and 16.5% (93.61 Mbps) for IOzone write. In the IOzone test, the performance of the container 

system in the process of reading/writing the hard disk better when the greater the value obtained. 

 

 

 
 

Figure 4. IOzone read/write performance result 

 

 

3.1.3. RAM speed 

 We have measured average values of add, copy, scale, and triad operations. Container is well known 

for its performance in RAM Speed that as good as native. Figure 5 shows performance overhead of each 

container is less than 3%. Again, LXD point out with only 0.97% overhead (7106.17 Mbps). As seen  

in Table 2, LXD has the best result in terms of overall performance, proving that optimization from LXC  

is effective. 

 

 

 
 

Figure 5. RAM Speed benchmark result 

29,122 

29,188 

29,136 

29,108 

29,06

29,08

29,1

29,12

29,14

29,16

29,18

29,2

LXD Docker LXC Native

Ti
m

e 
(S

) 

CPU Intensive 

6850

6900

6950

7000

7050

7100

7150

7200

LXD Docker LXC Native

M
b

p
s 

Average RAM Speed 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Performance analysis of multi services on container Docker, LXC, and LXD (Ridha Muldina Negara) 

2013 

Table 2. Overall performance metric result 
Parameter 
 

System 

Native Docker LXC LXD 

IOzone read 1 0.74 0.81 0.85 

IOzone write 1 0.82 0.77 0.83 

RAM speed 1 0.98 0.97 0.99 
CPU intensive 1 0.73 0.91 0.95 

Summary 4.00 3.27 3.46 3.62 

Overall performance 100% 81.7% 86.5% 90.5% 

 

 

3.2. Application server performance result 

 This section describes the performance of each server (FTP server, web server, and email server) 

that runs on different container platforms. This test is done to see the best platform to run the server  

and under what conditions. 

 

3.2.1. Web server 

 The aim of this measurement is to evaluate server speed in serving HTTP requests with a defined 

number of requests. From figure 6, we concluded that LXD best to serve low concurrent level with user≤2000. 

For high user (user≥2000) LXC serve with the highest speed. 
 

 

 
 

Figure 6. Web server total time result 
 

 

 Figure 7 shows the maximum request a server can serve when a defined number of users access web 

servers at the same time. Docker issued bottleneck [13] because we used basic network configuration to all 

containers to see their nature. Op value varied between container and concurrent level. Docker has Op range 

from 3.1% to 5.9%, LXC from 0.91% to 3.5%, and LXD from 0.005% to 10.8%. 
 

 

 
 

Figure 7. Request per time evaluation result 

3
9

9
5

,5
1

8
 

7
4

4
3

,7
6

4
 

9
1

4
9

,1
1

0
 

8
6

0
3

,6
4

3
 

8
6

0
7

,8
2

0
 

8
6

6
1

,7
8

4
 

8
4

5
7

,1
3

7
 

8
5

4
5

,6
0

1
 

3
7

5
6

,5
2

4
 

7
0

0
4

,1
0

1
 

8
7

0
2

,7
2

0
 

8
2

8
8

,6
9

6
 

8
1

6
8

,1
5

6
 

8
2

1
9

,4
7

2
 

8
1

9
4

,4
1

9
 

8
2

8
0

,1
3

4
 

3
8

5
4

,3
4

3
 

7
4

5
1

,6
7

4
 

9
1

6
4

,7
8

0
 

8
6

0
8

,6
8

9
 

8
3

4
5

,1
7

9
 

8
9

9
0

,2
2

0
 

8
8

7
2

,4
3

3
 

9
0

0
5

,2
2

4
 

3
9

9
5

,2
8

7
 

7
5

3
4

,7
6

6
 

8
2

4
4

,9
3

5
 

8
2

7
4

,7
9

6
 

8
3

0
7

,6
0

6
 

8
2

1
1

,0
3

8
 

8
3

3
9

,0
3

3
 

8
3

1
9

,2
8

1
 

1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0  5 0 0 0  6 0 0 0  7 0 0 0  8 0 0 0  

Ti
m

e 
(s

) 

Number of Request 

Reques t  Per  T im e  

Native Docker LXC LXD



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 5, October 2020 :  2008 – 2011 

2014 

3.2.2. FTP server 

 From Figures 8, 9, and 10 we concluded Docker has the biggest overhead compared to LXC  

and LXD. The Container can speed up the FTP transactions because the container has simpler access  

and only access the resource it needed rather than took the whole process and be inefficient. Docker recorded 

29.9% faster than native, LXC 44.2%, and LXD 47.4%. However, LXC has the lowest overhead in terms of 

transfer rate but the lowest latency than other containers. In FTP data transactions, each filesystem container 

will access where the data is placed and prepare it for sending. 

 

 

 

 

 
 

Figure 8. Total time FTP server evaluation result 
  

Figure 9. Transfer rate FTP server evaluation result 

 

 

 
 

Figure 10. FTP server latency evaluation result 

 

 

3.2.3. Mail server 

 Native and container have a very low-performance difference in terms of SMTP protocol evaluation, 

as shown Figure 11. Overhead of all containers recorded below 3% with LXD as the lowest (Op=1.9%). 

LXC come up with Op 1.85% and Docker with 2.09%. The evaluation of application server performance  

is summarized in Table 3. 

 

 

 
 

Figure 11. Performance result of mail server SMTP evaluation 

0,000

20,000

40,000

60,000

80,000

Native Docker LXC LXD

Ti
m

e 
(s

) 

Total Time 

0

5000

10000

15000

20000

Native Docker LXC LXD

K
b

p
s 

Transfer Rate 

0,00

1,00

2,00

3,00

4,00

5,00

Native Docker LXC LXD

m
s 

Latency 

14900

15000

15100

15200

15300

15400

15500

Native Docker LXC LXD

M
es

sa
ge

s 
Se

n
t 

Total Messages 



Bulletin of Electr Eng & Inf  ISSN: 2302-9285  

 

Performance analysis of multi services on container Docker, LXC, and LXD (Ridha Muldina Negara) 

2015 

Table 3. Summary of application server performance evaluation result 
Platform Web server Mail server FTP server 

Total time Request per time Message sent Total time Latency Transfer rate 

Docker Slowest in total 

time, stable at 

speed increment 

Stagnant when 

user≥ 4000 

Ideal for low to 

medium load 

mail server 

Slowest among 

other containers 

Low latency Least in 

transfer rate 

LXC Fast for user 

≥3000  

Efficient in 

serving maximum 

request when 
user≥3000 

Lowest 

overhead 

Very likely to 

LXD 

Low latency, 

lowest 

overhead 

The fastest 

among other 

containers 

LXD Effcient for 

user≤2000 

Efficient in 

serving maximum 
request when user 

≤2000 

Very likely to 

LXC 

The fastest 

among other 
containers 

Low latency Very likely to 

LXC 

 

 

4. CONCLUSION 

There is a difference in system performance between containers and native due to the overhead of 

virtualization. However, performance overhead in container is considered small and in several cases almost 

not exists. Overall performance results in this study indicate that LXD has the most superior value from 

Docker and LXD with a percentage of 90.5%. These results indicate that LXD as an increase of LXC can 

improve overall Linux container system performance. LXD has patched up its system and has the best result 

in terms of system performance, proven that LXD can increase overall performance effectivity. 

When compared with native system performance, all parameters tested in the overall performance 

metric show that native is still superior. In CPU intensive parameters, the performance difference between 

native and container is only 0.137% adrift. In other parameters, such as IOzone read, IOzone write,  

and RAM Speed test, found differences in performance ranging from 2.067% (at RAM Speed) and 20%  

(on the IOzone test). This performance difference is due to the isolation of cgroups so that the processes that 

occur in the container do not mix with the host system. 

 

 

REFERENCES 
[1] B. Wang, Y. Song, X. Cui, and J. Cao, “Performance comparison between hypervisor- and container-based 

virtualizations for cloud users,” 2017 4th Int. Conf. Syst. Informatics, ICSAI 2017, pp. 684-689, 2017. 

[2] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. lightweight virtualization: A performance comparison,” 

Proc. - 2015 IEEE Int. Conf. Cloud Eng., IC2E 2015, pp. 386-393, 2015. 

[3] A. C. Baktir, Y. C. Kulahoglu, O. Erbay, and B. Metin, “Server virtualization in information and communication 

technology infrastructure in Turkey,” 2013 21st Telecommunications Forum Telfor (TELFOR), pp. 13-16, 2013. 

[4] Y. Tachibana, J. Kon, and S. Yamaguchi, “A study on the performance of web applications based on RoR in a 

highly consolidated server with container-based virtualization,” 2017 Fifth International Symposium on Computing 

and Networking (CANDAR), Aomori, pp. 580-583, 2017. 

[5] J. Nie, “A study on the application cost of server virtualisation,” 2013 Ninth International Conference on 

Computational Intelligence and Security, Leshan, pp. 807-811, 2013. 

[6] A. Abuabdo and Z. A. Al-Sharif, “Virtualization vs. containerization: Towards a multithreaded performance 

evaluation approach,” 2019 IEEE/ACS 16th International Conference on Computer Systems and Applications 

(AICCSA), pp. 1-6, 2019. 

[7] R. Madhumathi, “The relevance of container monitoring towards container intelligence,” 2018 9th International 

Conference on Computing, Communication and Networking Technologies (ICCCNT), Bangalore, pp. 1-5, 2018. 

[8] R. Dua, A. R. Raja, and D. Kakadia, “Virtualization vs containerization to support PaaS,” Proc. - 2014 IEEE Int. 

Conf. Cloud Eng. IC2E 2014, pp. 610-614, 2014. 

[9] M. I. Djomi, R. Munadi, and R. M. Negara, “Analysis of FTP service performance and video streaming based on 

network function virtualization using Docker containers,” in Bahasa “Analisis performansi layanan FTP dan video 

streaming berbasis network function virtualization menggunakan Docker containers,” ELKOMIKA, vol. 6, no. 2, 

pp. 180-193, 2018.  

[10] R. F. Aswariza, D. Perdana, and R. M. Negara, “Analysis of VyOS virtualized network function throughput and 

scalability on VMWare ESXi, XEN, and KVM hypervisors,” in Bahasa “Analisis throughput dan skalabilitas 

virtualized network function VyOS pada hypervisor VMWare ESXi, XEN, dan KVM,” JURNAL INFOTEL, vol. 9, 

no. 1, SI, pp. 70-74, 2017. 

[11] A. Babu, M. J. Hareesh, J. P. Martin, S. Cherian, and Y. Sastri, “System performance evaluation of para 

virtualization, container virtualization, and full virtualization using Xen, OpenVZ, and XenServer,” 2014 Fourth 

International Conference on Advances in Computing and Communications, Cochin, pp. 247-250, 2014. 

[12] L. Ma, Y. Chen, Y. Sun, and Q. Wu, “Virtualization maturity reference model for green software,” 2012 

International Conference on Control Engineering and Communication Technology, Liaoning, pp. 573-576, 2012. 

[13] N. Jain and S. Choudhary, “Overview of virtualization in cloud computing,” 2016 Symposium on Colossal Data 

Analysis and Networking (CDAN), Indore, pp. 1-4, 2016. 



                ISSN: 2302-9285 

Bulletin of Electr Eng & Inf, Vol. 9, No. 5, October 2020 :  2008 – 2011 

2016 

[14] B. Lakshmikanth and M. R. Mundada, “Automation framework development for continuous integration and 

deployment in CT machines using LXC and Docker container lightweight virtualization techniques,” 2018 

International Conference on Current Trends towards Converging Technologies (ICCTCT), pp. 1-4, 2018. 

[15] B. Golden, “Virtualization for dummies,” John Wiley & Son Publishing Inc., 2011. 

[16] A. A. Mohallel, J. M. Bass, and A. Dehghantaha, “Experimenting with docker: Linux container and baseos attack 

surfaces,” 2016 Int. Conf. Inf. Soc., (i-Society), pp. 17-21, 2016. 

[17] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network virtualization hypervisors for software 

defined networking,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp. 655-685, 2015. 

[18] R. K. Barik, R. K. Lenka, K. R. Rao, and D. Ghose, “Performance analysis of virtual machines and containers in 

cloud computing,” 2016 Int. Conf. Comput. Commun. Autom., (ICCCA), pp. 1204-1210, 2017. 

[19] A. Sampathkumar, “Virtualizing Intelligent River ® : A comparative study of alternative virtualization 

technologies,” Thesis, Clemson University, 2013. 

[20] D. Bernstein, “Containers and cloud: From LXC to Docker to kubernetes,” IEEE Cloud Comput., vol. 1, no. 3,  

pp. 81-84, 2014. 

[21] S. Gupta and D. Gera, “A comaparison of LXD, Docker and virtual machine,” Int. J. Sci. Eng. Res., vol. 7, no. 9, 

pp. 1414-1417, 2016. 

[22] J. Claassen, R. Koning, and P. Grosso, “Linux containers networking: Performance and scalability of kernel 

modules,” Proc. NOMS 2016 - 2016 IEEE/IFIP Netw. Oper. Manag. Symp., no. Noms, pp. 713-717, 2016. 

[23] Á. Kovács, “Comparison of different Linux containers,” 2017 40th Int. Conf. Telecommun. Signal Process., (TSP), 

pp. 47-51, 2017. 

[24] E. Casalicchio and V. Perciballi, “Measuring Docker performance : What a mess !!!,” Int. Works. on Autono. 

Control for Perfor. and Reabil. Trade-offs in Internet of Services, (ACM ICPE 2017 Companion), pp. 11-16, 2017. 

[25] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, “Performance overhead comparison between hypervisor and container 

based virtualization,” 2017 IEEE 31st Int. Conf. Adv. Inf. Netw. Appl., (AINA), pp. 955-962, 2017.  

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Adinda Riztia Putri received her BSc degrees in Telecommunication Engineering, from the 

Telkom University, Indonesia in 2018, respectively. Her interests include Software Defined 

Networks, and Virtualization Network Engineering. 

  

 

Rendy Munadi received his Doctor in Telecommunication Engineering from Indonesia 

University. He is current research in the area of Next Generation Network, Wireless Sensor 

Network, Routing Management and Virtualization Network. 

  

 

Ridha Muldina Negara received her BSc and MSc degrees in Telecommunication Engineering, 

from the Institute of Technology Telkom, Indonesia in 2009 and 2013, respectively. Her interests 

include Software Defined Networks, Cyber Security, Telecommunication Systems and 

Computer Engineering. 

 

 


